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Monday, March 14th
10:00 - 12:00 Registration
10:15-12:00 Lab Tour 1
12:00 - 1:00 Lunch
1:00 - 1:10 D.M. Mann and C.K. Law
Welcome and Announcements
1:10 - 1:45 W. Bryzik, TARDEC
“Army Tank-Automotive Propulsion Activities”
1:45 - 2:25 R. Bill, ARL-VPD
“Vehicle Propulsion Directorate Engine, Combustion and Reacting
Flow Interests”
2:25-3:00 M. Valco, NASA-Lewis
' “DOE/NASA Engine Research Program”
3:00-3:15 Break
3:15-4:00 J.M. Clarke, Caterpillar
“Requirements for the Next Generation Diesel Engine”
4:00 - 4:30 N.P. Cernansky, Drexel University
“High Pressure Preignition Chemistry of Hydrocarbons and
Hydrocarbon Mixtures”
4:30 - 5:00 C.K. Law, Princeton University
“Ignition in Convective-Diffusive Systems”
5:00 - 5:30 J. Trolinger, MetroLaser
“Resonant Holographic Interferometry”
6:30 - 7:00 Social Hour
7:00 Banquet
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Tuesday, March 15th

8:00-8:30
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9:00 - 10:00
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11:45-12:45

12:45 - 1:15

1:15- 2:00
2:00 - 2:30

2:30 - 3:00

3:00-3:15
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R.A. Dobbins, Brown University
“Control of Soot Formation”

D.E. Foster, University of Wisconsin
“Soot Modeling and Experiments at the ERC”

S.P. Lin, Clarkson University
“Jet Breakup Phenomena”

Break

L.A. Melton, University of Texas
“Fluorescent Diagnostics and Fundamental Droplet Processes”

D.A. Santavicca, Penn State University
#The Effect of Turbulence on Vaporization and Mixing in Dense

Sprays”

Lunch

J. Abraham, University of Minnesota

“Computations of Sprays in a Very High Pressure, Constant

Volume Chamber”

P.V. Farrell, University of Wisconsin
“Spray Research at the ERC”

F.V. Bracco, Princeton University
“Advanced Diesel Injection Strategies”

K.T. Rhee, Rutgers University
“High Speed, Four Color Infrared Digital Imaging for Studying In-
Cylinder Processes in a DI Diesel Engine”

Break
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INVITED PRESENTATION

Army Tank-Automotive Propulsion Activities

W. Bryzik
US Army Tank-Automotive RDE Center (TARDEC)
Warren, MI 48397-5000

The propulsion system forms a critical building block for present and future military ground
vehicles. Characteristics of particular importance to TARDEC's ground propulsion systems
include: low system volume (including engine, cooling system, air handling system,
turbomachinery, ducts, etc.), low system weight, improved fuel economy or vehicle range, rapid
acceleration, reduced signature (including thermal acoustic, visual/smoke, etc.), high reliability and
survivability, and improved cost effectiveness. Innovative integration of the propulsion system
components, when combined with individual component technology gains, produce an exceptional
opportunity for optimizing the above listed characteristics.

Various propulsion system activities at TARDEC are discussed during this briefing from an
overall perspective standpoint. Representative example projects dealing with: 1) low heat rejection
combustion, 2) cold start characteristics, 3) engine finite element analysis procedures, 4) advanced
diesel technology, 5) engine wear analysis and life prediction, 6) thin ceramic coating performance
optimization, 7) multi-fuel adaptation to two-stroke engines, and 8) a number of other efforts
aimed at optimizing the characteristics given above are discussed. In addition, the importance of
TARDECs leveraging of propulsion activities being funded by sources such as the Army Research
Office (ARO), Army Research Laboratory (ARL), ARPA, DOE, NSF, and others is noted with a
few examples given.
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INVITED PRESENTATION

Vehicle Propulsion Directorate Engine,
Combustion and Reacting Flow Interests

R. Bill

U.S. Army Vehicle Propulsion Directorate/ARL
Lewis Research Center, Cleveland, Ohio 44135

2-1




INVITED PRESENTATION

DOE/NASA Engine Research Program

M. Valco
NASA Lewis Research Center
Vehicle Propulsion Directorate, Army Research Laboratory
Cleveland, OH 44135-3127
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INVITED PRESENTATION

Requirements for the Next Generation Diesel Engine

JM. Clarke
Engine Research Department
Caterpillar Inc.
Peoria, IL 61629

The common goals of the ARO, universities and the heavy duty engine industry are discussed. It
is apparent that understanding emission mechanisms, evolving the next generation of design
optimization methods and identifying potential revolutions in engine design should be highlights of
engine related research.

The chemical kinetic and fluid dynamics modeling of heterogeneous combustion processes
remains beyond the reach of engine designers and developers. The low speed, uncertain accuracy
and high cost of current physically based simulations takes them outside the design and
development cycles. This is the area which needs the most development of physical insight leading
to efficiently formulated models.

Current engine design is an extremely complex decision process based on information from
marketing, raw materials costs, manufacturing costs, and analyses related to durability and
reliability, performance and emissions. Much of the data is subject to uncertainty and some of it is
based on experience in the form of "rules of thumb". In spite of this informal process (some might
say because of its informality) engines have improved enormously. Additional improvement is
anticipated based on up-to-date information processing and rational optimizing procedures. For
instance, we are a long way from the genetic programming of optimum en gine designs.
Anticipated computer performance increase seems to bring procedures of this type into the realm of
possibility. Efforts to move in this direction will continue to attract industry interest.

Since the diesel engine matured in its current form there have been many "breakthroughs”
in technical capability. Looking at the "breakthrough" list it becomes tempting to try new engine
designs based on recognizing the role such capability might play in radical approaches to a new
generation of ecologically benign and economically attractive engines. Here is a chance for
universities to challenge their multi-disciplined(?) eager(?) young engineers. A table of required
and desired functional features in any new design is included.
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High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

N.P. Cernansky and D.L. Miller
Department of Mechanical Engineering and Mechanics
Drexel University
Philadelphia, PA 19104

An experimental program to study the effects of pressure on preignition chemistry of
hydrocarbon fuels is currently underway. Experiments are being conducted over a range of
operating conditions, including temperatures which encompass the low and intermediate
temperature regimes (500-1000 K), and pressures ranging from less than 1 atm to 20 atm. Three
experimental test facilities are being used to perform this study: a pressurized flow reactor (PFR),
an atmospheric flow reactor (APFR), and a static reactor (SR). Results are being used to provide
much needed kinetic and mechanistic information in these regimes over a range of pressures.
Additionally an effort to develop in situ diagnostic capabilities in the laboratory has received
partial funding under this contract.

Recent efforts have concentrated on the SR, PFR, diagnostic development and modeling.
Studies of n-pentane in the SR have identified important steps which control product formation.
Results on 1-pentene indicate that long alkenes exhibit negative temperature coefficient behavior
similar to alkanes. Experimental studies of n-butane, iso-butane and n-pentane oxidation at
elevated pressures using the PFR have confirmed that branched chains are less reactive than
straight chains and have provided species distribution data for use in modeling. The newly
installed on-line FTIR measured significant levels of formic acid, a species difficult to measure
by other techniques, from the reaction of n-butane, iso-butane and n-pentane. DFWM
development continues with measurements of OH and continued work on HO2. All of these data
are used to develop detailed chemical mechanistic information and elucidate the effects of
pressure on the mechanisms. We have recently adopted a two temperature sensitivity method to
test for the effect of reaction rate changes on NTC behavior.

Research supported by the Army Research Office Under
Contract No. DAAH04-93-G-0042; Proposal No. 30782-EG
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Ignition in Convective-Diffusive Systems

C. K. Law and T. G. Kreutz
Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

Autoignition in non-premixed hydrocarbon/air combustion has been experimentally, numerically,
and analytically investigated in counterflowing jets of fuel against hot air. Details of the ignition
process are studied by examining the steady-state situation as the air temperature is raised to a point
just prior to ignition. Experimental measurements of the ignition temperature have been made as a
function of system pressure, aerodynamic strain rate, and fuel concentration for fuels such as
hydrogen, methane, propane, n-butane, and iso-butane. These studies are augmented by numerical
modelling using detailed chemistry that elucidates the nature of underlying ignition ‘kernel’, a
spatially-localized zone of high chemical reactivity.

In the H,-air system, both experiments and calculations show that the ignition temperature,
when plotted as a function of pressure, exhibits a characteristic ‘Z’-shape similar to that seen in the
explosion limits of homogeneous Hy-air mixtures. The three sections of this Z-curve are denoted
the first, second, and third ignition limits in analogy with the three explosion limits. Numerical
analysis indicates that, for each limit, the dominant chemistry is identical in both the explosion and
ignition situations. Aerodynamic straining is found in all cases to increase the ignition temperature
due to the decreased size of the ignition kernel and the decreased residence time of active radicals
within it. Ignition in the first and third limits are found to be sensitive to aerodynamic straining
because loss of radical species via mass transport plays an important role in these two ignition
regimes. In contrast, the second ignition limit is governed primarily by fast chemical reactions and
is thus relatively insensitive to variations in the strain rate.

The chemistry governing the Hp-air ignition process has been distilled by means of careful
analysis and verified by means of ‘skeletal” chemical reaction mechanisms consisting of a minimal
number of elementary reaction steps. The skeletal mechanisms have been further compressed to
‘reduced’ mechanisms, consisting of non-elementary reactions, via techniques such as the steady-
state approximation. These methods and reaction schemes are validated by means of comparison
with the results of computations using the full kinetic mechanism.

In the H,-air system, the role of heat release in providing ‘thermal feedback’ at the ignition
turning point has been examined in detail for all three ignition limits. Contrary to classical notions
based upon one-step overall chemistry, thermal feedback is shown to play essentially no, or
minimal, role in the steady-state solution at the ignition turning point - either in its character or
parametric dependence. In most cases, turning point and S-curve behavior are found to exist in the
complete absence of heat release, driven solely by ‘kinetic’ feedback provided by algebraic
nonlinearities in the coupled chemical kinetics. As a result, the location of the ignition turning
points are found to be essentially governed by the kinetics of gain versus loss of key radicals in the
ignition kernel which depend parametrically upon global variables such as air temperature, strain
rate, pressure, and fuel concentration.

Experimental and calculated ignition temperatures for methane, as well as measured ignition
temperatures for n-butane and iso-butane, are found to be quite sensitive to the strain rate.
Sensitivity to acrodynamic straining is found to occur when at least one critical ignition reaction
proceeds at a rate which is relatively slow and thus comparable to the rates of mass transport out of
the localized region of the ignition kernel.
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Background

- Ignition in Diesel engines is expected to involve

inhomogeneous mixtures:
- Premixed reactants
- Nonpremixed reactants

- Temperature nonuniformity

« Presence of temperature and concentration gradients

implies the importance of diffusive transport.

« |gnition states determined from homogeneous
experiments may not be directly applicable.
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Objectives

« To study the dynamics and chemical kinetics of
hydrocarbon/air ignition in the presence of diffusive

mixing.

« Experimentally and computationally determine:

1) Bulk ignition parameters such as ignition
temperature and strain rate;

2) Identify the critical kinetic steps and species
governing diffusive ignition.

« Analytically derive:
1) Reduced mechanisms relevant to diffusive ignition;
2) Ignition Damkéhler number and criteria.

« Conceptually understand/unify:
1) Homogeneous versus diffusive ignition;
2) Thermal versus kinetic ignition.
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Approach

. Counterflow configuration: well-defined strain rate and

hence characteristic flow time
- Steady-state ignitability studies
| I- Transient ignition
- Nonpremixed ignition: cold fuel against hot air
« Premixed ignition: cold fuel/air against hot inert

- Investigate/manipulate ignitability for different:
- Fuels (e.g. Ha, CH4, C3Hg, n-C4H10, i-C4H10)
- Fuel concentration
- Temperature of the hot jet
- System pressure
- Flow strain rate
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Diffusive Ignition of
Hydrogen/Oxygen Mixtures

« Homogeneous ignition of hydrogen/oxygen mixture is
characterized by three explosion limits.

« How is this behavior modified by diffusion and
aerodynamic straining in a nonuniform, flowing mixture?
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H./Air Reaction Mechanism
(Yetter, Dryer, Rabitz, 1991)

Reaction A n Ea
1. H+0, & O+OH 1.92x10'* 0.0 16.44
2. O+H; & H+OH 5.08x104 2.67 6.29
3. OH+H; & H+H0 2.16x108 1.51 3.43
4. OH+OH < O+H0 1.23x104 2.62 -1.88
5* o+ M @ H+H+M 4.57x10%° -1.4 1044
6.* O+0+M & O+ M 6.17x10" -0.5 0.0
7* O+H+M & OH+M 4.72x10%  -1.0 0.0

8* H+OH+M & HO0+M 2.25x10%2 -2.0 0.0
9.* H+0O2+M & HO2+M 6.17x10"® -1.42 0.0

10. HO+H & H2+ 0o 6.63x10® 0.0 2.13
11. HO2+H < OH + OH 1.69x10' 0.0 0.87
12. HO2+0O & OH+0Op 1.81x10® 0.0 -0.4

13. HO»+ OH & H20 + O 1.45x10'®  -1.0 0.0

14. HO2 + HO, H.0s2 + O- 3.02x1012 0.0 1.39
15.* H,0,+M < OH+OH+M 1.20x10"7 0.0 45.5

16. Hx02.+H < HO + OH 1.00x10'® 0.0 3.59
17. H202 +H & H2 + HOQ 4.82x1 013 0.0 7.95
18. Hz02,+ 0O < OH+ HO: 9.55x10° 2.0 3.97
19. H0>+O0OH & H,O+HO,  7.00x1 02 0.0 1.43

Third body enhancement factors: H20: 12; Ho: 25
Units: cm, mole, sec, kcal
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Reduced Mechanisms for
Hydrogen/Oxygen Ignition

« First Limit: O and OH in steady state
3H, + O, — 2H,0 +2H
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« Second Limit: H, O, and OH in steady state;- 20g ~ Wb
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Summary of Accomplishments

- Nonpremixed ignition of hydrogen/air extensively

studied;

« Unified chain-transport interpretation of ignition

phenomena;

- Role of thermal versus kinetic ignition identified; 11

« New numerical algorithm developed for the study of

ignition/extinction phenomena.

Current and Future Work

 Premixed systems
« Transient ignition
« Methane and methane/hydrogen ignition

« C,-hydrocarbon ignition
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Resonant Holographic Interferometry

P.A. DeBarber, N.J. Brock, M.S. Brown, C.F. Hess, and J.D. Trolinger
MetroLaser
18006 Skypark Circle, Suite 108
Irvine, CA 92714

This presentation discusses a novel, nonintrusive, spectroscopic tool to explore
combustion and flames. This tool is called Resonant Holographic Interferometric
Spectroscopy (RHIS). RHIS is a completely nonintrusive optical diagnostic. As the
RHIS acronym implies, RHIS is a hybrid technique. It brings together the three-
dimensional imaging capability of holography, the phase sensitive detection of
interferometry, and the species specificity of spectroscopy to form a powerful, versatile
diagnostic package. RHIS is a holographic interferometric technique which may be
combined with tomography to provide three dimensional characterization and
quantitative measurement to species number density, temperature, velocity, pressure,
molecular mixing, and other thermophysical quantities.

Conceptually, a single RHIS measurement records the concentration of a
resonant absorbing chemical species in the form of a spatially resolved interferogram.
This is achieved by holographically recording the phase shift due to the resonant
species simultaneously with the phase shift due to all other nonresonant species. Upon
reconstruction, the phase shift produced nonresonantly is subtracted out leaving a neat
interferogram which contains information only about the resonant species. In practice,
this is achieved in the following way. The output beams of two lasers operating at
different frequencies are spatially and temporally overlapped to form a single two-color
beam. One of the lasers is tuned to a molecular resonance of the species of interest.
The other laser is tuned off-resonance. The two-color beam is then split into the
standard object and reference legs of a conventional holographic interferometer. Light
from each leg is then recombined on a film plate to form two holograms simultaneously
at each frequency. Both of the two electric fields at the two different frequencies in the
object arm are phase shifted by the same amount due to density fluctuations. However,
the resonantly-tuned electric field receives an additional phase shift. Upon
reconstruction, the two holographically recorded images interfere with each other
resulting in a cancellation of all phase information that was common to. the two electric
fields. Therefore resulting in an interferogram which preserves only the phase shift
fringes attributable to the resonant species. This, in effect, is a background-free
recording of the spatially resolved density of the resonant species. Since phase shifts
are largest near resonance, the RHIS technique is far more sensitive to low species
concentrations than conventional nonresonant interferometry. The detected phase shifts
are linearly dependent on concentration which makes the RHIS technique also linearly
dependent on concentration. ‘

7-1




on resohance

off resonance

l

06 7 N /

imaginary Component

----- Real Component

absorption line center

Figure 1. Plot of Real and Imaginary components of the index of refraction near an
absorption line,

Two wavelength recording of resonance hologram

A Y
12

object hologram

A

reference beam

[EReconstruction process

reference and information
wavefronts

reconstructed phase map
hologram
of resonance species
L
=
>< \/\/J

reconstruction image plane \r\/
d
~ -

beam ~e_ =

Figure 2. Two wavelength RHIS procedure. Panel (a) illustrates the recording procedure.
A1 corresponds to the laser tuned "on resonance"; Ay corresponds to the laser tuned "off
resonance". Panel (b) outlines the reconstruction process. Note that the reconstruction can

be accomplished with almost any available laser A;.




HOLOGRAPHIC REFERENCE

PLATE BEAM A)\,l I
50/50
M, BEAMSPLITTER

,I
Iy

BURNER

YAG
LASER > e
-632nm

50/50
BEAMSPLITTER

Figure 3. Schematic diagram of the two-laser RHIS system. In this case, the object
probed is the flame produced in a laboratory burner.

B. Conventional
Interferogram

A. Experimental
Configuration

NaCl treated wire

air —

[ P <«— methane

Figure 4. (a) Experimental configuration. (b) Conventional holographic interferogram.
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A. Two-wavelength, off- B. RHIS Holographic
resonance Holographic Interferogram of Na
Interferogram

Figure 5. (a) two-wavelength off-resonance interferogram illustrating total subtraction
inherent in holographic reconstruction. (b) RHIS interferogram of Na seeded into a
methane/air diffusion burner flame.

Figure 6. Predictions for the dynamic range of an individual RHIS hologram as a function
of the minimum detectable fringe shift.
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CONTROL OF SOOT FORMATION

R.A. Dobbins
Division of Engineering
Brown University
Providence, RI 02912

Micrographs (TEM) obtained by thermophoretic sampling of soot particles from diffusion
flames have revealed two contrasting morphologies. On the fuel side of the lower diffusion
flame front, many small singlet precursor particles are found that are nearly transparent to the
electron beam. In the higher temperature regions the particles are found to consist of opaque,
carbonaceous aggregates made up of monodisperse spherules. Our studies and reference to the
literature lead to the conclusion that the precursor stage observed in diffusion flames is a
common, if not universal, stage in the formation of the carbonaceous materials in shock tubes, in
premixed and diffusion flames, and in droplets in microgravity.

The nature of the precursor particle recently has been explored by laser microprobe mass
spectrometry (LMMS). This research has been a collaboration with R.A. Fletcher of the NIST
using the LAMMA-500 instrument available there. The advantages and drawbacks of the
LMMS method and the results of testing samples of pure and mixed polycyclic aromatic
hydrocarbons are reviewed. LMMS mass spectra of precursor material from low on the axis of
the diffusion flame reveals many ion masses corresponding to PAHs in the 200 to 300 amu
range. The most prominent of these are the mass numbers are 252, e.g., benzo(a)pyrene; 276,
e.g., benzo(ghi)perylene; and 300, coronene. Of striking significance is that these PAH masses
were predicted by Stein and Fahr (1985) to be among the most thermodynamically stable species
("stabilimers”) in typical flame conditions of pressure and temperature. Mass spectra of the
carbonaceous material from the upper flames show many carbon clusters with typically with 0,
1, or 2 hydrogen atoms. Small quantities of ion masses in the 418 to 444 amu range are also
found in the carbonaceous materials along with traces of fullerene-like ions - 600, 720, 840 and
1105 amu. The values of hydrogen mole fraction, or C/H ratio, of both precursor and
carbonaceous material are found by the LMMS to conform to prior expectations.

The rate of carbonization of precursor materials is an important parameter in the
understanding and intervention in the process of soot formation. In nitrogen-diluted ethene
diffusion flames the onset of carbonization is delayed and occurs over a range of temperatures
according to the amount of dilution. Thermocouple measurements are conducted using the
rapid insertion technique to eliminate the influence of soot deposition on sensor emissivity. The
observed locations of carbonization and the observed temperature profiles lead to carbonization
rate measurements when first order kinetics are assumed. Two methods of data reduction are
employed and give similar results. An activation energy of 21 kcal/mole is found for the rate of
carbonization of precursor particles. The implications of this carbonization rate on soot
formation in combustion processes are discussed.

ARO Grant DAAL03-92-G-0023
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-265 NM LASER OUTPUT FOCUSSED ON SAMPLE - 1 TO 100 MICROJOULES,
10ns PULSE.

- BEAM DEFOCUSSED TO 50 - 100 MICRON DIAMETER, 10+8 W/m2.

- VACUUM OF 10-4 PA.

- MATERIAL IS SIMULTANEOUSLY ABLATED AND IONIZED.

- JONIZED PRODUCTS MASS ANALYZED, 0 TO 5700 AMU, M/AM ~500 @ M/Z =
200, M=1 TO 5700 AMU.

- REPRODUCIBILITY LOW BECAUSE MICROSCOPIC VARIABILITY OF SAMPLE

LASER MICROPROBE MASS SPECTROMETRY
COMPOSITION AND THICKNESS & VARIABILITY OF LASER PULSE.
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LMMS Analysis - Soot from CpHy diffusion flame.

7 =50 mm T=1570K

x=41t024
Many CxHy y=0,1,2

Xy, 2 0.14 C/H=6.1

Small amounts of PAH-like species 418-444

Trace levels of masses corresponding to Csg, Cg0, C70, Co2

Z =20 mm T=1430K

PAH-like ions (count fraction)
252 (0.16) 276 (0.20) 300 (.090)
Xy 20.35 CH=1.9

Many C,Hy Clusters

Ten PAHs-like ions reported by others
Five PAHs-like ions not reported
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Species

Formula

(g/mole)

Cyclopenta(cd)pyrene

CisHio

1226

Benzo(a)pyrene

CaoHi2

252

Benzo(ghi)perylene

CxHp

276

Indeno(1,2,3-cd)pyrene

Cz2Hj2

276

Anthanthrene

CxHp

276

Coronene

CasHip2

300

Naphtho(8,1,2-abc)coronene

"CaoHi4

374

Qvalene

Cs2His

398

Table 3.6-2: PAH species identified in flame samples using liquid
chromatography. Pyrene and fluoranthene, which were also detected by
gas chromatography, are not listed in this table. Many peaks which

appeared in the chromatographs were not identified.

(From Feitelberg, Ph.D. Thesis, MIT, 1990)

PAHs Found in CoHy4 Premixed Flame
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8-10

(Moles Ny / CoHy)

2.1 cm3/s)

Ethene Diluted with Nitrogen (Q of C2Hg4
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CARBONIZATION RATE

METHOD I

1
K, = [t ) -t (zl)]_
Z1, Z, observed, 5 mm resol.

T(z) for Six Dilution Ratios

Plot In(Kp) vs. T-1, find A & E

METHOD I

K, = Ae"E/RT

t
My =1-4 fe-EATO MO 4
0 t MO

Given t;, T(t), assume E, reiterate to find A to give % =e-lwhent=t,
0
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\ Shock
7 \. Tube

{ ]
10+4/T(K)
CARBONIZATION RATE (PRELIMINARY)
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Soot Modeling and Experiments at the ERC

D.E. Foster
Engine Research Center
University of Wisconsin - Madison

In this presentation the Engine Research Center's experimental and modeling work relative
to soot emissions from diesel engines will be reviewed. First an overall picture of the
work will be presented which will be followed by a focused discussion on three specific
projects. The three projects being: in-situ measurements of soot particle size, volume
fraction and number density via a combination two wavelength scattering/extinction
technique, the development of a phenomenological soot model for the purpose of
inclusion into three dimensional computational diesel simulations and the effort to predict
soot emission with simplistic soot models taken from the literature and applied to the
KIVA II simulation. :

The scattering extinction technique was built on our experience of installing
windows into an operating diesel engine by introducing a laser, via fiber optic
transmission, into the cylinder next to the window. The technique was compared to a
scattering-two color radiant emission technique and the results for particle size, number
density and volume fraction were found to be consistent. The measurement system was
then applied to the engine operating under different conditions.

The phenomenological soot model describes the processes of inception, nucleation,
surface growth, oxidation and coagulation with global kinetic reactions. The rate
constants for each global reaction is taken to be consistent with those for similar types of
reactions from published data. The model has been applied for conditions of a laminar
flame published in the literature and the results were encouraging. Next the model has
been exercised for a computational cell from a KIVA diesel engine simulation. The
profiles of fuel, oxygen and temperature were scaled in a parametric study to examine the
response of the model. No parameters were adjusted during these variations. The model
predicts the expected soot emission behavior.

Finally the results of our efforts to incorporate the Hiroyasu soot model into the
KIVA II diesel engine will be discussed. Hiroyasu's model has been modified to include
the Nagle Strickland-Constable oxidation. The results have been tuned for a single
operating condition and the model used to assess whether it predicts the correct trends
with changes in engine operating conditions. The results reinforce the strong coupling
between the combustion model and the emission models. It has been determined that the
NOx model demonstrates the highest level of sensitivity to small variations in the
combustion model.




"Soot Modeling and Experiments at the ERC"

Dave Foster
Engine Reserach Center
University of Wisconsin - Madison

Eleventh ARO Engine Workshop
March 15, 1994

ERC Faculty: Gary Borman, Mike Corradini, Pat Farrell, Dave Foster, Jay
. Martin, Rolf Reitz and Chris Rutland

Overview of Current Work:

Experiments:

. Two dimensional two color optical pyrometry

. In-situ measurement of particle size, number
density, volume fraction and temperature via
scattering and extinction

. Interaction between multiple, split injection
scenarios and the soot NOx trade-off

Modeling Efforts:

. Development of a phenomenological soot model
. Incorporation of literature models into KIVA
. Implimentation of the more detailed models into

KIVA
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In-situ Measurement of Particle Size, Number Density,
Volume Fraction and Temperature via Scattering and
Extinction

Point measurement in the cylinder of an operating DI
diesel engine

Simultaneous measurement of light
scattering/extinction and radiant emission from engine
soot cloud

Different engine operating conditins were investigated
Phenomenological soot model

Global kinetic expressions for the physical processes
of:

inception

surface growth

oxidation

coagulation

Rate constants for the global kinetic expressions are
consistent with literature

Compared to laminar flame data

Implimented in a KIVA computational cell




Incorporation of literature models into KIVA

Hiroyasu model with NSC oxidation implimented into
KIVA 1I diesel engine simulation

Preparations for more detailed models to be
implimented into the simulation

9-4




-awidua pue dn-13s jrondo jo wesdeip JHeWdYOS

10}0|INPON 2A1}2alq0
jpo13dpo—o03sondy . 2d02s0JoIN aubuy
i T 0
4V YISyl |} Iy - G
10y0932Q 46N i
934 dwy
068, S R E
ssod uiD9 ol uuu._ joondo | rr —/
Mo days [88Y -
- 1
&l Jo1aN
3 | samod
00 {10 _ u_oﬂ___ww
° °° S1Wd :
OOO.— : o Qoo \YAL —ojoyd
1ojowonudlod  Aiddns Kiddng
I3d MOl Jemod  J8amod-
YA

9-5




0.508mm 0.D.
Surgical Tubing

Copper Gasket

3mm Spherical

Glass Lens

Screw

A |

3
"

-

-..h.'.."..
L eaanasl

MBNNN K

Yy ISP
Fiber

/ .
o
l:_

LSS IIIEI
AN
LA SII NP1 LY)

(777727 el

N

MN

/.

SENDING WINDOW
UNIT

) —

1.27 X 1.27mm Slot

1.02mm O.D.
Surgical Tubing

\

Set Screws

)

Spacer !
Copper
Gaskets

Sender Window Hole

Retaining
Nut

LR
ditaiunt

e .
Abts 3N
NS

Copper Gasket

/' Random Fiber
Optic Bundle

———— Aperture

Lenses

|_— INVAR

Sapphire
— Window

Crevice
Volume

Cross section of the optical probe.

9-6




DN

AN

\
\)

N

Cross section of the engine head, piston bowl, and measurement volume
location.




&
8
i

>
o
8

Y SR RO T TN S OO O OO U O T Y G I AN OO O B B O B AR O}

W
o
8

2.000

Scattering or Radiation (Volts)
o
3

0.000

oeeae Radiation 850 nm
adaAA Radiation 514 nm
6000 Scattering 514.5 nm
+++++ Scattering 488 nm

-15-10 -5 0 5 10 15 20 25 30 35
Crank Angle (ATDC)

Separated radiation and scattering signals after
ensemble averaging at the three measured wavelengths.

9-8



‘\
g @eesa Scat./Ext. 4
100 aAdaas Rad./Scat.
-
| .
]
a
A g
5. 10
=
0
c
2 it
1 i
[ . 3 i
g |
E T
3 0.4 - -45.0
) -40.0
N
-350 E
c
-30.0 ~
| .
250 ©
Q
200 £
3 0
150 X
!-10.0
5.0
1.00E-004 - L- 2500
2 1/ I
- 4t ¢ o
€ 7.506-005 § if I
S . 2000 o
2 ] -5
L n -
5.00E-005 - ]
o - o -
e L g
e ] —~1500 £
> 2.50E-005 - 2
‘6 ] -
0 N L
@ d ]
0.00£+000 = 1000

-15-10 -5 0 5 10 15 20 25 30 35
Crank Angle (ATDC)

Soot particle diameter, number density, and soot vol-
ume fraction for both the scattering / extinction and
radiation / scattering methods. Also soot particle
temperature obtained from radiation two-color pyrome-

try.

9-9




Sootl Volume Fraclion, (v

1600 1000 rpm

s
Scattering/Extirction

Raciation/Scattering

60.0 ~
—~ 40.0
E -
< ]
ks ]
. S b
| € ]
.8 .
) S 20.0 -
50 = ]
R} 1
j =
0.0 i T 1 I ] 1 T 7 0 ‘ T 4 1 1 [ T &t T T LI l o-o T L} T L] [ T T 1 T | L) L4 T T 1 T T 1 1 l
-10.0 0.0 10.0 20.0 30.0 40.0 -15.0 ~5.0 5.0 15.0 25.0
Crank Angle (ATDC) Crank Angle (ATDC)
~100Q rpm 1000 rpm
Radiation/Scattering Scottering/Extinction
5.0£-005 ~ P 8.00E-005 —
N o ~_4 ' '~°._‘Q oeeso p = 0.2 7.20E-005 -
- , L 8 ] aveoxs g = 0.2 T
4.0E-005 = oy Yo00000p = 0.5 6.40E-005 ~
1 4 & 5.60E-005 —
40 } 2 7
3.06-005 4 1 i ' 4.80E-005 ~
10 = 1
] ; / 4.00E-005 —
1 7 ‘é J
2.0E-005 o J 3 3.20E-005
4 S -
. ' >
4 — 2.40E-005 {
1 S . \
1.06~C05 = | ! ¥ 1.60E-005 , ‘.‘
1.8 < i
10 8.00E-006 ] \
0.CE+0CO R LA S B A N N L AL B i 0.00E+000 ™7 ™
-10.0 0.0 10.0 20.0 30.0 40.0 -15.0 -5.0 5.0 15.0 25.0
Crank Angle (ATOC) Crank Angle (ATDC)

Crank angle resolved soot volume fraction and diameter al.10_00 rpm and @=
0.2. 0.24. and 0.3 for both the scattering/extinction and radiation/scattering

methods.

9-10




fv

Soot Volume Fraction,

1700 rpmr 1700 rpm

Radiation/Scottering Scottering /Extinction
60.0 — 60.000 -
3 3 oesso
-t -l r 2 dd
- -
50.0 ] 50.000 -1 00009
—40.0 3 ~ 40.000 “
£ b E 3 S
. < ] Co
] 3 Coue
L Y + -
S 300 - $ 30.000 - : oo
[ 7 [ a B <
2 IR \
8 500 © 20.000 !
- - 'Y
-y - e L}
10.0 10.000
1
o-o T L] T 1 1 1 ¥ LR ] Ll T T 1 1 |l T ﬁ] 0.000 T T Ll 1S T Ll 3 { L3Nl ¥ v ] T T T i 1
-10.0 0.0 10.0 200 30.0 -10.0 0.0 10.0 20.0 30.0
Crank Angle (ATDC) Crank Angle (ATDC)
1700 rpm 1700 rpm .
Rodiation/Scattering Sccttermg/&xtinct]on
6.0E-005 — 1.0E-004 — RN
. 9=0.2 | seee0 o=0.2 S
: awoaan ¢=O 3 9.0E-005 — e ¢=O‘3 "‘ ’ ‘
4 00600 ¢=0'5 ‘ B 000900 p=0.5 e !
5.06-005 S e
3 8.0E~005 pon ot
4 2 . Gy \
] ¢ 7.0E-005 - SR
. 4.0E-005 8 4 ' 5
] T 6.0E-005 — ' '
- 2 4 l
- [ »
3.0E-005 o 2-0E-005 K '
] E ] C :
] 5 4.06-005 SN :
] s ] P ;
2.0E-005 — 3.06~005 - et ‘
4 o o .
- o “ i i
3 V1 2.0E-005 AN :
1.0E-005 - o
] 1.0E-005 —
0.0E+000 -A} T r‘?’ | L S SN0 VR S B N S S B l‘~l'l T T 0.0E+000 LI {-‘[ rrror T ™ 1
-10.0 0.0 10.0 20.0 30.0 40.0 -10.0 0.0 10.0 20.0 30.0
Crank Angle (ATDC) Cronk Angle (ATDC)

Crank angle resolved soot volume fraction and diameter at 1700 rpm and ¢=
0.2. 0.3, and 0.5 for both the scattering/extinction and radiation/scattering

methods.

9-11




inert
products

o inert
(3) | oxidation products
Soot precursor
inception

oY) radicals \ (7) | oxidation
pyrolysis ®)

fuel soot
& © particles
) / .
growth species Surface . (81 coagulation
(acetylene) growth
(4) ]oxidation SO_Ot
particles
inert
products
1.5x10 6 ———F————— 7T 2500
Q e T 42000
g 3 S — - ::._
o 1.0x107° —
& 11500 =
S o
= 2
© — — temperature ©
€ fuel (C2H2) 71000 ©
D 50x107- ——--0
o > Xygen e
5 )
o - 500
0.0

9-12




fv[cm3/cm3]

2.0x1077

153107

1.0x10”7

5.0x10°8

00

o

measured

computed

0.0

concentration [molecule/cm3]

25

1 ! 1
50 75 10.0 125 15.0

time [ms]

(@]
N
o
N
S
AN
\‘ig
P
—t
o
N

diameter [nm]

1
-
Qo




102 T T T T T 3000
10’1 —— temperature, T
1004 - -- - fuel .
—_ P 4 2500
€ 10— @ , \\‘ ]
S Ve / N,
8 10°%- v \\-l: -1 2000 <
= 1074 : - o
cC o2 S~~~ 9
S 104 N — 41500 5
g 10 g ~ &
E 10_7_ ’ , ‘\ (]
o e 41000 g
S 10 - Y ] oS
S 109 ‘o _fuel
1071 -—c-.. < 500
1014 Tl ‘
10-12 T 1 v ) M 1 ' I 1 i ' 1 v 1 | ' i M 0
2 -0 0 10 20 30 40 50 60 70 80
crank angle [degrees]
8X10-6 || 1 1 ] 1 1 ] ' | M 1
[ 1 -Tmax=1750 K
-6l .
- 7x10 2 - Tmax=1800 K
E 6xoSk 3-Tmax=1875K  _
9 4 - Tmax=1925 K
2 a0l 5-Tmax=2000K
9, | 6 - Tmax=2050 K
> 4xto8f .
- i
O 3x106F -
'6‘ L
8 2a0° .
o i
E 1x10°F .
3 i
g O i 1 s [l " e " 1 A
20 40 0 10 20 30 40 50 60 70 80

crank angle [degrees]

9-14




3.0X1(.')17 T T S S S S s s S S R S i |
.7 1-Tmax=1750K
2.5x10°°F 2-Tmax=1800K
= 3-Tmax=1875K
E soxo' 4-Tmax=1925K |
% 5 - Tmax=2000 K
S 15x0'7% -
@
§-1.0x1017— .
(V]
T
N 16
O 5.0x10 .
0.0/ = — e
20 -10 0 10 20 30 40 50 60 70 80
crank angle [degrees]
8.0x10'° ———— T
1 -Tmax=1750 K
2 -Tmax=1800 K
3-Tmax=1875K
— 10L -
@ 6.0x10 4 - Tmax=1925 K
S) 5-Tmax=2000 K
K
ho |
10L -
5 4.0x10
g 5
@ T
© 2.0x10'°F .
O
©
©
00 N 1 N 1 [ N 1 N ] 5 1 N
20 10 0 10 20 30 40 50 60 70 80

crank angle [degrees]

9-15




T Tttt
——— with particle oxidation
oy 6 - -- - with no particle oxidation
g 4x10r 2 - Tmax=1800 K iy
L 4-Tmax=1925K
-
G, 3x10°r ]
2 .
& 2x0°F -
o
o
© X0 .
=
2
(@]
> O M 1 1 ] N " " 2 N M n ] :
20 10 0 10 20 30 40 50 60 70 80
crank angle [degrees]
80 ¢ ——m——r——T——7— T T T T 1
1 -02/100 Tmax=2000 K
N
-6 - -
S S0 4. 010
= 5-02*100
L
Z 410 .
c
=]
E
= 2x08F -
(]
£
= 5
g 0 N 1 M 1 A [ i 1 i 1 n 1 ] N
20 -10 0 10 20 30 40 50 60 70 80

crank angle [degrees]

9-16




REGIMES OF JET BREAKUP

S.P. Lin and Michael D. Hudman

Mechanical and Aeronautical Engineering Department
Clarkson University

Potsdam, NY 13699-5725

ABSTRACT

The regimes of jet breakup including the first-wind induced, second wind-induced, and
atomization regimes are elucidated by use of a single equation. The equation is obtained by
use of linear stability analysis. The equation relates the dimensionless intact length L to the
dimensionless velocity U for relevant flow parameters. The results are plotted in the L vs U
space to elucidate the regimes and mechanism of the jet breakup. The theory compares well
with some experiments.

INTRODUCTION

The atomization process is widely used in the formation of sprays for various industrial
applications, including fuel spray. The process can be achieved by breaking up a liquid jet
or a liquid sheet emanating from a nozzle of various geometries. The main cause of
atomization is known to be due to the pressure fluctuation [1,2]. The jet may also be broken
up by the Rayleigh mode of capillary pinching which produces droplets of diameter much
larger than that of atomized droplets [3]. For a given jet breaking up in a given gas, the
Rayleigh mode occurs at low jet speed and the atomization process takes place at relatively
large velocity. In the Rayleigh mode of breakup, the actual breakup does not take place until
some finite distance down stream of the nozzle. This distance is called intact length. The
intact length increase with the jet speed up to a critical speed, and then decreases as the speed
is increased further. This transition takes place in so called first wind-induced breakup regime
[4] which follows the Rayleigh breakup regime. After the transition, the jet continues to
shorten and numerous small ligaments emanate from the liquid-gas interface in the so called
second wind-induced breakup regime. Finally the intact length vanishes, and the spray of small
droplets is formed. Attempts have been made to explain the change of the intact length with
the jet speed in different regimes, based on the first principle. Weber [5] attempted to explain
the first wind-induced regime on the basis of a simplified characteristic equation obtained from
linear stability analysis. His theory predicted a considerably smaller critical velocity for the
maximum intact length. Stirling and Sleicher [6] improved Weber's theory by use of an
empirical correlation. However, a theory which explains all regimes of the jet breakup from
a single equation has not yet appeared. Here we offer such a theory.

10-1




THEORY
The starting point of our explanation is the following equation

2k 2 (I{(k) 2k LML
Re Io(k) Az + k2 Io(k)ll(l)
| o A2 - k? K(®)l(K) 1
X (0 -« 0" Q A+ k? K(K)Ig(k) »
2 -k Lk

?

(@ - ik)? +

Lok - k3
We 2+ k2 LK

R = Reynolds number = Uyr/v,
We = Weber number = p, Uy® 1y/S
Q = Density ratio = p,/p,
A=k*-Re (O - ik)

Eq. (1) is the characteristic equation obtained [4] from the stability analysis of a liquid jet
subject to disturbances whose Fourier components have a factor exp [i k y + ot], where k =
k, + ik, is the complex wave number, @ = @, + iw, is the complex wave frequency, y is axial
distance measured from the nozzle tip. In Eq. (1), K and I are the modified bessel functions
of orders indicated by their subscripts, p is the density, v is the kinematic viscosity, S is the
surface tension, U, is the average jet velocity, 1, is the jet radius and the subscripts 1 and 2
associated with the physical properties denote respectively the liquid and gas phases. Weber
used a drastically simplified equation of Eq. (1). His results did not enjoy agreement with
experiments. For a given jet at different U,, Sterling and Sleicher [6] multiply the Q-term in
Eq. (1) by 0.175 and solve the equation numerically for [&3,(k)],.x assuming k; = 0. The intact
length L is then obtained from the relation L = constant/[®,(k)] ... The factor 0.175 was used
so that their theoretical prediction agrees best with the experiments. They argued that this
multiplication factor is necessary because the air viscosity which may have a damping effect,
is neglected in the theory. They also quoted the related work of Benjamin and stated that the
air viscosity effect is much smaller than the inertia force effect of gas at the interface. Thus
there is an apparent inconsistency. If the air viscosity effect is mall, then the reduction of the
gas inertia force represented by the Q-term in Eq. (1) should not have been reduced by a large
factor of (1 - 0.175).

Here we will not multiply the Q-term by any empirical factor. However we shall use a

rational approximation to simplify the mathematics, and bring out the physical mechanisms
of the jet breakup. Since both phenomena of first and second wind-induced regimes are due
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to the interfacial pressure fluctuation [1,2], and the viscosities play minor roles [3], we shall
neglect the Re-term in Eq. (1). This is justifiable for the large Reynolds number jet which is
encountered in most of the applications. With this approximation, Eq. (1) is reduced to

®, + (0 + k)’ QA = We'k(i - K¥) B = 0, ()
where

A - K®LE®
K, (K)Iy(k)
I, (k)
Ip(k)
We define the intact length L to be the distance from the nozzle tip to a downstream position

where the disturbance amplitude has grown from the initial value a, to an amplitude a for
breakup. Then a = a, exp(k;L) and thus

L =k €n (a/a)) . (3)
k, in Eq. (3) must be found from Eq. (2) as the maximum amplification rate for a given Q and
We. The numerical task required is very considerable since the complex k appears in the

arguments of the modified Bessel functions. Fortunately, the spatial and temporal growth rates
are related [7] by

k, = ® + 0(We?) , 4)
k. = @ +0(We?) . (5)

Moreover, both the first and second wind-induced breakup occur at We < Q, [1]. For a water
jet in air, Q = 0.13 at 100 atm. Thus we may write Eq. (3) as '

L =o' ¢én (a/a) ,
with an error of less than 2% if the jet is issued into air of pressure less than 100 atm. ®,
must be obtained from Eq. (2) as the maximum temporal growth rate w_, for given Q and We.
“The real and imaginary parts of Eq. (2) are
(@2- ) (1 +QA)-kQAQw, +k) - We'k(1-k)B=0 (6)

, (1 + QA) + kQA = 0 T




Substitution of @, from Eq. (7) into Eg. (6) yields

0l=We'k(l-K¥)b+Ka=0, 8)

where

a=QA/(1+QA)Y , b=B/(+QA).
The extrema of , in Eq. (8) must satisfy

we! (1-3k9)b +2ka+ We'k (1-K) b +Ka" =0. 9)

where primes denote differentiation with k. For given We and Q, the solution of (9) gives km
the wave number corresponding to the most amplified disturbances. Substitution of km for
k in Eq. (8) yields (@), Substituting this value for k, in Eq. (3), we have

L = o, €n (a/ay) (10)

RESULTS

The dimensionless intact length L obtained from Eq. (10) with €n(a/a;) = 1 is plotted against
the dimensionless jet speed U = WeQ in Fig. 1, for three different values of Q. The Rayleigh
regime I where QWe < 0.8, the first wind-induced regime II where 0.8 < QWe < 1.2, the
second wind-induced regime III where 1.2 < QWe <5 and the atomization regime IV are also
indicated int he same figure. These parameter ranges are consistent with the results obtained
in the author's previous investigations [1-3], on the mechanism of jet breakup. The dotted
lines near U = 0 correspond to the dripping jet. The dripping jet arises from absolute
instability [8]. Some experimental results taken from sterling and Sleicher for large Reynolds
number are also given in the same figure for comparison. It should be pointed out that the
intact length discussed here refers to the intact liquid-gas interface. It does not refer to the
intact core length [4,9], the determination of which requires nonlinear theory.

CONCLUSION

Five regimes of jet breakup have been recognized from the solution of a single equation.
These regimes are dripping jet, the Rayleigh capillary pinching, first wind-induced breakup,
second wind-induced breakup, and atomization. The dripping jet regime occurs when the
Weber number is smaller than the critical Weber number [9]. The Rayleigh regime occurs
when QWe < 0.8. The first wind-induced regime takes place in 0.8 < QWe < 1.2. The
second wind-induced regime occurs in 1.2 < QWe < 10. Both the first and second wind-
induced breakup are due to pressure fluctuation at the interface. Finally, the atomization
regime starts when QWe > 10. The present classification of the breakup regimes refers to the
jet interface, but does not refer to the jet core. The classification of the regimes of jet core
breakup requires nonlinear theories.
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NOMENCLATURE
a, disturbance amplitude

k,
L,

Q.

I

o ?

Re ,

S,
We

complex wave number
intact length

Density ratio

nozzle radius
Reynolds number
Surface tension

, Weber number

Greek symbols

A , argument of Bessel function

o , complex wave frequency

v , kinematic viscosity

Subscripts

0 , initial value

1 , liquid phase

2 , gas phase

i , imaginary part

r , real part
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Restoration of Laser
Droplet 8licing Images

Jingyi Zhang and L.A. Melton
Department of Chemistry
University of Texas at Dallas
Richardson, TX 75083-0688

and
Novel Droplet 8licing Techniques

Michael Winter
United Technologies Research Center
East Hartford, CT 06108

In droplet slicing imaging, a technique in which the midplane of
a sub-millimeter droplet is illuminated with a laser sheet and
the fluorescence is viewed (usually) at 90° to the sheet, the
image is significantly distorted, with the central portion being
magnified and the outer portion being compressed at the droplet
edge. At UTD, algorithms and programs for the removal of these
distortions have been developed and tested.

The numerical restoration process involves several steps.
(1) The mapping which takes the actual fluorescence pattern
within the droplet (object image) to that measured by the CCD
camera (camera image) is constructed. (2) The inverse mapping,
which takes the camera image to the restored object image, is
constructed. (3) These mappings are used on numerically
constructed images to test the degree to which the restored
object image matches the object image. (4) For experimental
data, it is necessary to include steps involving the conversion
from Cartesian coordinates to polar coordinates and vice versa.

The image restoration process is highly unstable
numerically. While it is possible to restore simulated 90°
‘droplet slicing images which have extremely high signal-to-noise
ratios, when low levels of random noise (1%) or perturbations in
the index of refraction are added, the numerical results become
meaningless because of unconstrained oscillations. The numerical
instability can be suppressed significantly by fitting the object
image to a set of basis functions and performing a least squares
fit for the best coefficients in this expansion. .

The best way to recover the image all the way to the edge of
the droplet is to carry out measurements at approximately 60~ to
the laser sheet. In this manner, the image on the acute side is
recovered easily because the numerical restoration is stable,
while the information on the oblique side is lost completely.

AT UTRC, aerodynamic droplet generators have been used (1)
to reveal the interactions between internal liquid motions in the
droplet and the motions in the surrounding vapor and (2) to
generate "layered droplets" in which fluorescent acetone vapor
condenses on a decane droplet and reveals the streamlines through

its fluorescence (bright on a dark background).
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The Effect of Turbulence on Vaporization and Mixing in Fuel Sprays

D. A. Santavicca
Department of Mechanical Engineering
Penn State University
University Park, PA 16802

The objective of this research is to obtain an improved understanding of the behavior
of droplets in vaporizing sprays, particularly under conditions typical of those in high swirl,
direct injection Diesel engines. Experiments are conducted in a high pressure, high
temperature, optically-accessible flow system which is capable of operation at pressures up to
70 atm, temperatures up to 600 K, gas velocities up to 20 m/sec and turbulence intensities up
to 40%. Single droplets, 50 to 500 micron in diameter, are produced by an acrodynamic
droplet generator and transversely injected into the flow. Measurements are made of the
droplet position, size, velocity and temperature from which droplet drag, dispersion, heating,
vaporization and breakup are characterized.

To date, the main results from this study are the following:

1. Under laminar flow conditions, vaporization was found to reduce droplet
drag, in quantitative agreement with the drag correlation of Chiang and
Sirignano.

2. Under laminar flow conditions, droplet drag was not affected by unsteady
curvilinear motion. ‘

3. Under laminar flow conditions, unsteady curvilinear motion was found to

result in small but non-negligible droplet lift (C;/Cp = 0.1), but only at
relatively high droplet Reynolds numbers (20 < Re < 38).

4. Turbulence was found to result in an apparent increase in droplet drag,
however, this can be accounted for by properly defining the mean relative
velocity.

5. Turbulence was found to result in an apparent decrease in the critical Weber

number for secondary droplet breakup, however, this can be accounted for by
properly defining the mean relative velocity.

6. The phenomenological nature of secondary breakup was observed to be
fundamentally different in turbulent and laminar flows.
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OBJECTIVE

TO CHARACTERIZE THE BEHAVIOR OF LIQUID FUEL
DROPLETS IN HIGHLY CONVECTIVE FLOWS TYPICAL OF
THOSE IN DIESEL FUEL SPRAYS.

TO CHARACTERIZE AND QUANTIFY DROPLET DRAG,
DISPERSION, HEATING, VAPORIZATION, DISTORTION AND

BREAKUP.

OF PARTICULAR INTEREST ARE THE EFFECTS OF
TURBULENCE AND SUPERCRITICAL CONDITIONS.
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APPROACH

EXPERIMENTS ARE CONDUCTED WHERE SINGLE DROPLETS
ARE TRANSVERSELY INJECTED INTO A LAMINAR OR
TURBULENT, SUB- OR SUPER-CRITICAL FLOW.

MEASUREMENTS ARE MADE OF THE DROPLET POSITION,
TEMPERATURE, SIZE, SHAPE AND CONCENTRATION, AS A
FUNCTION OF TIME, FROM WHICH DROPLET DRAG, LIFT,
DISPERSION, HEATING, VAPORIZATION, DISTORTION AND
BREAKUP ARE DETERMINED.
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STATUS

RAMAN IMAGING OF JET BREAKUP IN A SUPERCRITICAL
ENVIRONMENT

CALIBRATION OF DROPLET THERMOMETRY

VISUALIZATION OF DROPLET VAPOR WAKE

RESULTS
EFFECT OF VAPORIZATION ON DROPLET DRAG (LAMINAR)

" EFFECT OF UNSTEADY CURVILINEAR MOTION ON DROPLET
DRAG AND LIFT (LAMINAR)

EFFECT OF TURBULENCE ON DROPLET DRAG
EFFECT OF TURBULENCE ON SECONDARY BREAKUP

EFFECT OF TURBULENCE ON DROPLET DISPERSION
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LAMINAR EXPERIMENTS -

THE EFFECT OF

VAPORIZATION AND
UNSTEADY
CURVILINEAR MOTION
EXPERIMENTAL CONDITIONS
Exp.No. | Djp(pm) T,ie (K) P (atm) Ugas (m/s) Re Bgeady
1 90 293 2.7 1.25 12-25 0.2
8 90 423 44 1.40 10-25 0.6
11 90 473 44 2.80 15-38 0.9
16 103 523 5.76 2.15 13-37 1.2
DATA ANALYSIS
mdU"'d=ip |T -0, Zd2 [-Co(U,,,~Uy,y) +Cp(Uq,x~Us,x) ]
dt 2 Vg g ~d 4 L\Yg,y Ydy p\¥g,x Yd.x
Uya_ 1 |G -F,|Ed2(C (U, ,~Usx) +ColUsy=Usy) 1 -m
m dc "'z'pglUg-Udl'Z t\Yg,x"Yd,x’ "~D\¥g,y “dy g
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EFFECT OF VAPORIZATION ON DROPLET DRAG

r
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EFFECT OF UNSTEADY CURVILINEAR MOTION ON DROPLET LIFT
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DROPLET TRAJECTORIES IN TURBULENT FLOWS
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THE EFFECT OF TURBULENCE ON DROPLET DRAG
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Computations of Sprays in a Very High-Pressure, Constant Volume Chamber

J. Abraham
Mechanical Engineering Department
University of Minnesota
Minneapolis, MN 55455

In recent years, several Diesel engine manufacturers have initiated efforts to explore ways of
achieving increased power-density in engines through the use of extremely high cylinder
pressures (up to 30 MPa). The engine configurations and geometries being considered are
unique and it is apparent that rapid progress can only be made if models for the in-cylinder flows,
sprays and combustion are used to optimize the engine geometry. However, the accuracy of such
models have not been assessed at the conditions being proposed. In this work, comparisons of
computed and measured penetrations for vaporizing and non-vaporizing sprays in a fixed-volume
chamber will be presented. The ratio of ambient gas density to liquid density varies in the range
0.005 - 0.25. Tt will be shown that adequate agreement of computed and measured penetrations
may be obtained if sufficiently high numerical resolution is used. It is also shown that as the
ratio of chamber density/liquid density is increased, the flammable fraction of the vapor fuel
increases.
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OBJECTIVE:

To assess the accuracy of a 3-D model for flows, sprays and combustion in diesel engines under
very high-pressure (density of ambient gas/density of liquid is relatively very high) engine
operating conditions.

THE MODEL:
Numerics

KIVA (Los Alamos)
Physics

1. Turbulence - k-¢
2. Boundary layers - wall functions
3. The spray model - (Princeton)
(a) atomization
(b) line source
(c) turbulence dispersion
(d) drop breakup (O'Rourke & Amsden, Los Alamos)
(e) collisions & coalescence

4. Autoignition model

5. Combustion model

13-2




EXPERIMENTAL DATA: (SANDIA NATIONAL LABORATORY)

Non-Vaporizing Sprays
Case | pairlpfuel | 1¢ (K) | Pfuel (MPa)
A 0.005 300 142
B 0.019 300 145
C 0.033 300 142
D 0.047 300 139
E 0.061 300 142
F 0.075 300 143
G 0.089 300 143
H 0.103 300 139
1 0.148 300 142
J 0.243 300 138
Vaporizing Sprays
Case Pajr/Pfuel Tc (K) Pfuel (MPa)
A 0.019 900 138
B 0.032 899 131
C 0.046 908 140
D 0.061 896 142
E 0.075 895 145
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Measurements

NON-VAPORIZING SPRAYS: PENETRATION VS TIME
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Measurements

PENETRATION VS TIME: VAPORIZING SPRAYS
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EFFECT OF GRID RESOLUTION
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NON-VAPORIZING SPRAYS: PENETRATION VS TIME
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NON-VAPORIZING SPRAYS: PENETRATION VS TIME
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PENETRATION (MM)

VAPORIZING SPRAYS: PENETRATION VS TIME
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VAPORIZING SPRAYS: PENETRATION VS TIME
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CONCLUSIONS:

7/
1. Comparisons of computed and measured penetration rates of sprays injected into high-

pressure ambient gas show adequate agreement provided sufficient numerical resolution is
used.

2. As chamber pressure density is increased, the flammable fraction of the vapor fuel increases

and the rich fraction decreases. If this persists during combustion, the combustion will be
faster as the chamber density is increased.
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Spray Research at the Engine Research Center

P. V. Farrell
with
G. L Borman, D. E. Foster, J. K. Martin, R. D. Reitz, C. J. Rutland and lots of graduate
students

Engine Research Center
University of Wisconsin-Madison
Madison, WI 53706

A large number of two-phase flow and related spray projects are underway at the
University of Wisconsin-Madison Engine Research Center. For diesel engines, the spray
projects are aimed at issues which include: increasing power density (power/package
size); examining cold start spray effects; studies of fuel effects on spray behavior; sprays
in some special application engines; and studies of spray effects on emissions. For spark
ignited engines spray work emphasizes spray effects on mixing.

At the Engine Research Center (ERC) a variety of methods are employed to
investigate the issues outlined. These methods include an extensive range of
experiments, from engine experiments to specialized off-engine investigations of specific
phenomena, and a large effort in applying and improving computer models of spray
events. The diesel injectors studied include moderate pressure injectors (500 bar), high
pressure experimental injectors (1000 - 2000 bar), and high pressure commercial or
production injectors (1500 bar).

The experimental tools currently applied to spray studies include conventional
measurements (mass flow rate, needle lift, pressures,...), optical methods (photography,
PDPA, diffraction based sizing, LIF,...), and some developing optical methods (PIV and
DSIV). " '

The modeling tools center around KIVA as the core of the model, with emphasis
for the spray on the submodels most connected to the spray predictions. The submodel
developments generally parallel experimental efforts in the same area. Modelers can
directly tell experimenters what kinds of data they need, and experimenters can discuss
with modelers what can be delivered. A very important part of the ERC activities
involves this interaction between model development and validation and experimental
focus, design, and operation. We think it is vital that students and faculty recognize the
value, requirements, and limitations of each of these approaches in order to progress on
all fronts. '

This presentation will attempt to outline the range of projects currently underway
at the ERC and to indicate the general objectives of the projects and what we hope will be
the impact of these projects. Many of the projects described are funded by ARO,
however for completeness, some non-ARO funded projects will also be mentioned. In
addition to the project survey, two areas of projects will be examined in somewhat more
detail in order to present a little more detail for these topics and some results.
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Fuel System

Common Rail - Electronically Controlied
independent control of the duration and timing of
up to 4 injections per cycle

Injector Type

Injection Pressure (variable)

90 MPa (13,230 psia)
Number of nozzle orifices 6

Nozzie diameter 0.26 mm

Spray Angle (included) 125°

Nozzle Cd 0.78 .

Fuel Type Amoco 1994 Low Sulfur Emissions Certification Fuel

[T1])
[ \
B
Dweli in Crank
Degrees

7-2)-44-(10)-49

% Injected
in pulsc

Particulate vs. NOx 75% Load

Particulate vs. NOx 75% Load h Lo
Triple Injections

—8— [S1] Single .6 —8— [S1] Single 0.6 51

0.184 —B— (D5) 48-(10)-52 (1) 0.18 e [T1] 7-(2)-44-(0)a9 |\ 1]

0.16 e T AP el —— (12 9-(2)-72:(10)-19 (T}

6 —»— [D7] 46-(6)-54 3 T —o— [T3] 45-(10)-29-(1)-26 2]

144 —»— [D8] 75-(10)-25 ] 20144 — [T4] 7-(2)-42-(1)-51

0.124 £ 412 T3
07] %,0.12 A ﬂf[1 ]

0.1 T 0.14 [T4]
[D8] 3

0.08 € 0.08-

0.064 * 0.06

0.04 4 0.04 4

0.02 : . : : — 0.02 . . ; ; ;

3 4 5 6 7 8 9 3 4 5 6 7 8 9

NOx {g/bhp-hr) NOx (g/bhp-hr)

BSFC and Particulate at NOx = 5 g/bhp-hr
. 75% Load Cases

220 0.14
L0.12
210 ;
_ o1 T
= 2
T 200-
§ -o.oaf\é
o 2
O ~ 10.06 2
& 190 3
[os] -
A 1 l H0.04 8
180484 _’
TERiRE » L0.02
Y BRI ’ 1N
170 B . ) - s +0
T1 T2 T3 D7 D2 D3 S1 D1 D4 D6 T4 S2
W BSFC

Injection Case

P Particulate
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Schematic diagram of the digital imaging system.
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Table 4.1. Injector Calibration Parameters

Parameter Lombardini Large nozzle | Large Nozzle | Small Nozzle
specifications | D-2 fuel Jet-A fuel D-2 Fuel

Injected mass | =20 19.7 19.7 7.7

(mg)

Nozzle Open. | 19-21 19.0 19.0 19.0

Press. (Mpa)

Mean Injection 25.1 254 25.1

Press. (Mpa)

Peak Injection 33.8 33.8 404

Press. (Mpa) :

Injection 1.7 W 1.8

Duration (ms). ’

Mean Inj. 186.3 192.6 198.7

Velocity (m/s) |.

Table 4.3. System Specifications for the Laser Interrupt Test and
Variables Studied with Ranges.

Lucas CAV injector with Bosch injection

Injection System Specification:

pump.
Pump Speed 1500 RPM -
Radial Penetration Distances R,(mm) 10, 15, 20, 30
Nozzle Diameter, d (mm) 0.180 (+), 0.306 (-)
Impingement Distance, L, (mm) 6,(-) 38 (+)

147 (-), 18.3 (+)

150 (-), 315 (+)

"14.34 (-), 22.07 (+)

1.23/1.93 Ny (-). 1.51/2.31 80% Ns(+)

16.6 (-), 197 (+)

Target Diameter, D; (mm)
Target Temperature, T (°C)
Ambient Density, p, (kg/m3)
Ambient Pressure, P, (Mpa)
Target Materials Conductivity -
(W/m2K @ 400K)

Fuel Type

T Amoco Low Sulfur D-2, Commercial Jet-
A
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(©
pray image film # frame 6. (b) and (c) Super-imposed edged spray
spray and cropped spray development diagrams.
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Test Somb (—H— Polarized filter
Diverging == Aperture
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T~ Mirror
Converging
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Converging Lenses
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Advanced Diesel Injection Strategies

F.V. Bracco
Princeton University

Direct injection of natural gas in Diesel engines by several engine companies has yielded the
surprising result that combustion time is much longer with natural gas than with Diesel fuel (the
ignition delay time is not much longer). Natural gas also yields unexpectedly high soot emission.
These trends are surprising because it has always be assumed that the faster the vaporization the
faster the combustion and the limit of very fast vaporization is the gas jet.

Results are presented of 3-D computations of direct injection of gaseous methane and of
liquid tetradecane through a multi-hole injector into a Diesel engine. The study focusses on the
distribution of fuel/air ratio within the resulting gas and spray jets under typical Diesel conditions
prior to ignition. It is shown that for a significant time after start of injection, the fraction of the
vapor fuel which is in richer-than-flammable mixtures is greater in gas jets than in sprays. For
methane injection, it is also shown that changing some of the flow conditions in the engine or
going to a poppet-type injector, does not result in improved mixing. It is concluded that in general
a spray mixes faster than a gas jet in direct-injection Diesel engines and possible explanations for
this unexpected result are provided. An experiment is also in progress to check the proposed
explanations.
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Fig.1: Computational grid layout in a 45° sector.
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Fig.2: Velocity flowfield and equivalence ratio contour
plots for the baseline case.
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Fig.3: "f - 6” plot for the baseline case.
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Fig.4: "f - 6" plot for the spray.
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Fig.5: Velocity flowfield and equivalence ratio contour
plots for the case with swirl.
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Fig.7: Velocity flowfield and equivalence ratio contour
plots for the case with a 15° angle between the engine

head and injector hole orientation.
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Fig.12: f - 6" plot for gas injection into a cylindrical
wl with a conical gas jet (reference case).
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1 Fig.13: "f - 6" plot for gas injection into a cylindrical
>wl with a conical gas jet and with the turbulence in-
nsity increased by a factor of 2 over the reference case.
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Fig.14: ™f - " plot for gas injection into a cylindrical
bowl with a conical gas jet and with the turbulence length
{ scale increased by a factor of 2 over the reference case.
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Fig.15: Velocity flowfield and equivalence ratio con-
tour plots for gas injection into a fixed volume, 2ms after

the start of injection.
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Fig.16: Velocity flowfield and equivalence ratio con-
tour plots for direct injection of liquid into a fixed volume,
2ms after the start of injection.

15-8




Y] i 15 2 25

time (e4)
Fig.17: "f - 6" plot for gas injection into the fixed
volume.
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Fig.19: "f - 6 plot for direct injection of liquid into
the fixed volume with the Sauter Mean Radius of the
initial drops increased by a factor of 10.
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Fig.21: Fraction of injected fuel momentum in fuel
(curve A), ambient gas (curve B) and in the pressure
difference (curve C) at 3.2cm from the injector for gas
injection into the fixed volume.
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Fig.18: "f - 9" plot for direct injection of liquid into

the fixed volume.
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Fig.20: "f - 6" plot for direct injection of liquid into
the fixed volume with the Sauter Mean Radius of the
initial drops increased by a factor of 25.
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Fig.22: Fraction of injected fuel momentum in fuel
(curve A), ambient gas (curve B) and in the liquid phase
(curve C) at 3.2cm from the injector for liquid injection
into the fixed volume. ’
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High-Speed Four-Color Infrared Digital Imaging for Studying
In-Cylinder Processes in a DI Diesel Engine

K. T. Rhee
Department of Mechanical and Aerospace Engineering
Rutgers, The State University of New Jersey
Piscataway, NJ 08855

Four geometrically identical digital IR images of in-cylinder events are simultaneously obtained
in respective spectral bands, which is individually triggered by the crank-angle signal generated
from the host direct injection (DI) diesel engine.

A new spectrometric information processing algorithm is developed in order to
determine distributions of temperature and species in the combustion chamber using the
measurements.

Apparatus Construction. The improved engine apparatus having optical access
has recently been incorporated with a new electronic controlled fuel injection system fabricated
in our laboratory. This system at present delivers a injection pressure of as high as 170 MPa
(25,000psi), which will be increased to well over 200MPa in the next system.

While our early two-color imaging system was employed in engine studies,
development of the four-color spectral imaging system has been performed at the same time.

This includes: (a) a newly developed reflective optical arrangement having three
custom-made spectral beam splitters; (b) four IR imaging camera heads; (c) new electronic
packages having printed boards (unlike the hand-wired electronic boards employed in the
previous systems) for driving the camera heads and simultaneously retrieving the output from
the cryogenically cooled imagers; and (d) several new computer programs for image processing
and display.

Experimental Results. The present ARO-sponsored study has been joined by Ford
Motor Co. and Texaco Research Center in order to study SI engine combustion by using this
new diagnostic system.

(1) SIengine combustion has been the subject to initially study by using this new tool
because its in-cylinder environment is easier to manage than its counter part, the CI engine.
This co-sponsored work is being directed to investigation of several engine events, including
the knock processes, flame kernel growth, deposit image, and cold start.

(2) The most significant finding from the DI diesel engine study reported in the
previous period was the low temperature inferred in the regions near the axis of the spray
plume, which has been further studied in order to explain the reasons.

Among the possible reasons are: The fuel/air in the regions are at speeds too high to
permit stable formation of reaction fronts, which seems to be supported by our video movie
produced using the new electronic fuel injector and the four-color system. The other reason is
that the fuel vaporization results in lower temperatures than required for self-ignition in the
regions. The next possible reason is that the combination of the above effects. Thatis, even
though the mixtures attain either marginally or sufficiently high temperatures for self-ignition, it
will be difficult to produce established reaction fronts when the reactive mixture is at high
speeds along the axis.

Future Activities. Since our imaging system is now operational, which we will
continue to improve, we will obtain measurements and analyze them using our new process
software in order to implement the project goal.

The variables to be immediately studied include different injector tips provided by
Cummins Engine and new fuels expected from the DOE Alternative Fuels Utilization Program.
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Summary of Presentation

0. Objectives

0. Methods

0. Analysis of Methods
o. Progress

o. Future Activities

Objectives

1. Develop a New High-Speed Multispectra IR Imaging System
for Engine Studies.

2. Develop Spectrometric Data Analysis Algorithm.

3. Investigate In-Cylinder Processes of a DI Diesel Engine
during the Entire Cycle Period:

Residual Gas Behaviors,
Temporal and Spatial Temperature Distributions,

Combustion Product Distributions,
Heat Transfer, and Others.

Work Tasks

A New Multispectra Imaging System.
Conventional Two-Color Method for Solid Wall.
New Dual-Band Method for Gaseous Mixtures.

A New Electronic-Controlled Fuel Injection System.

IO

Bench Test and Engine Experiment.
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Combustion Instability During Cold Starting of Diesel Engines

N. A. Henein, M. Lai
Center for Automotive Research
Wayne State University
Detroit, MI 48202

Combustion instability during cold starting of diesel engines causes many problems such as
long periods of cranking and the emission of excessive amounts of unburned fuel in the
form of white smoke, stalling after an instable combustion or a complete failure of the
engine to start. Such problems are of major concern to engine manufacturers and specially
to the Army under the critical field operating conditions.

The objectives of this research program are: i- to investigate the nature of
combustion instability, its randomness, and dependence on the fuel properties and engine
design. ii- to investigate the causes of combustion instability and iii- to propose solutions.

Tests are conducted on three single cylinder, direct injection, four-stroke-cycle, diesel
engines of different designs. The first is a TACOM research engine, water cooled,
connected to an electric dynamometer for motoring and power absorption, equipped with
an endoscope. The second is an industrial stand-alone engine equipped with its electric
starter, battery and fuel tank. Both these engines are installed in a cold room where the
ambient temperature can be controlled between the normal room temperature and -50°C.
The cold starting tests are conducted after the engines are soaked for 6 to 8 hours. The
third engine is an AVL 520 water cooled engine modified for optical access through the
piston top, all around the top of the cylinder and through the cylinder head. The engine
is connected to an electric dynamometer for motoring. The intake air temperature is
controlled. Fuel injection occurs only for two consecutive cycles while the engine is being
motored. Traces are taken for the fuel pressure before the injector and for the cylinder gas
pressure. The diagnostic instrumentation includes the following: (a) a high speed movie
camera to study the spray parameters such as penetration, angle, impingement on and
reflection off the walls of the combustion chamber, start of the ignition process, flame
propagation and smoke intensity, (b) Exciplex LIF to study spray evaporation (without
combustion) in a nitrogen atmosphere. (c) High speed video for 2-color pyrometry for
simultaneous flame temperature measurements, and OH chemiluminescence imaging. (d)
Lase Incandescence Imaging (LII) to investigate the spatial distribution of soot in the spray.

The - experimental results on the three engines indicated the following: (a)
Combustion instability is not a random process and combustion may occur every sixteen,
twelve, eight or four strokes depending on the ambient temperature. (b) Combustion
instability is not engine or fuel specific. (c) Combustion instability is caused by a
combination of factors related to engine dynamics and combustion kinetics, during the
transient cold starting process.

High speed photographs of the two consecutive cycles were obtained at different
intake air temperatures: 23°C, 18°C and 13°C. At23°Cthe engine fired and combustion was
stable in the two consecutive cycles. At 18°C the engine fired in the first cycle and misfired
in the second cycle. At 13°C the engine misfired in the two cycles.

Future plans are for the use of different laser based techniques to investigate the

cause(s) of combustion instability.
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OVERALL GOAL

IMPROVE THE COLD STARTING OF MILITARY
DIESEL ENGINES.

BACKGROUND
1. DIESEL COLD STARTING PROBLEMS INCLUDE:

. LONG PERIOD OF CRANKING AND THE EMISSION
OF EXCESSIVE AMOUNTS OF UNBURNED FUEL,
(WHITE SMOKE).

. STALLING AFTER AN INSTABLE COMBUSTION.
. COMPLETE FAILURE OF THE ENGINE TO START.

2.  MOST OF THE PROBLEMS ARE RELATED TO AN
INSTABLE COMBUSTION PROCESS.
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OBJECTIVES
TO ANSWER THE FOLLOWING QUESTIONS:

1. IS COMBUSTION INSTABILITY DURING COLD
STARTING A RANDOM PROCESS ?

2. IS COMBUSTION INSTABILITY CAUSED BY A
| FAILURE OF THE AUTOIGNITION PROCESS ?

3. IS COMBUSTION INSTABILITY SPECIFIC TO ONLY
SOME FUELS ?

4. IS COMBUSTION INSTABILITY SPECIFIC TO ONLY
SOME ENGINES ?

5. 'WHAT IS THE EFFECT OF TEMPERATURE ON
COMBUSTION INSTABILITY ?

6. WHAT ARE THE CAUSES OF COMBUSTION
INSTABILITY ?

17-3




APPROACH

THEORETICAL
ANALYZE THE COMBUSTION PROCESS UNDER THE
TRANSIENT THERMAL AND DYNAMIC ENGINE

CONDITIONS DURING COLD CRANKING AND
STARTING.

DEVELOP A MATHEMATICAL MODEL FOR THE
ENERGY RELEASE IN SUCCESSIVE ENGINE CYCLES,
CONSIDERING THE FOLLOWING:

. INSTANTANEOUS ANGULAR VELOCITY

. INSTANTANEOUS BLOWBY

. INSTANTANEOUS FUEL INJECTION

. INSTANTANEOUS BURNING RATES
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EXPERIMENTAL

ENGINES: DIRECT INJECTION, 4-STROKE-CYCLE

(1) TACOM, DYNAMOMETER DRIVEN, WATER
COOLED, WITH AN ENDOSCOPE FOR IN
CYLINDER IMAGING.

(i1) DEUTZ, STAND-ALONE, AIR COOLED.

(111) AVL, MODIFIED FOR OPTICAL ACCESS,
DYNAMOMETER DRIVEN, WATER COOLED.

. HIGH SPEED MOVIE CAMERA
. EXCIPLEX LIF
. HIGH SPEED 2-COLOR PYROMETRY

. LASER INCANDESCENCE IMAGING
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1-

CONCLUSIONS

COMBUSTION INSTABILITY DURING COLD
STARTING IS NOT A RANDOM PROCESS. ENGINE
MAY OPERATE ON A 16, 12, 8 OR 4-STROKE-CYCLE,
DEPENDING ON THE AIR TEMPERATURE.

COMBUSTION INSTABILITY DURING COLD
STARTING MAY NOT BE CAUSED BY A FAILURE OF
THE AUTOIGNITION PROCESS.

COMBUSTION INSTABILITY DURING COLD
STARTING IS NOT ENGINE OR FUEL SPECIFIC.

COMBUSTION INSTABILITY DURING COLD
STARTING IS CAUSED BY A COMBINATION OF
FACTORS RELATED TO ENGINE DYNAMICS
AND COMBUSTION KINETICS.
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Effect of Thin Ceramic Coatings on Combustion and Emissions in a DI Diesel Engine

D. E. Klett
Mechanical Engineering Department
North Carolina A&T State University
Greensboro, NC 27411

E. M. Afify
Mechanical and Aerospace Engineering Department
North Carolina State University
Raleigh, NC 27607

An experimental and analytical study on the effect of thin ceramic coatings on soot and NOx
emissions and performance of a direct injection diesel engine is being conducted jointly between
North Carolina A&T State University and North Carolina State University.

Performance and emissions data have been gathered on a normally aspirated Ricardo
Hydra single cylinder DI engine with various combinations of ceramic coatings installed. Thin
ceramic thermal barrier coatings were applied to the piston crown and bowl, the head and
valves, and the cylinder liner. The coated piston and head were run singly and in combination
with the cylinder liner to investigate the effects of these different coated surfaces on emissions
and performance for two different pure hydrocarbon fuels, hexadecane and dodecane. Coating
the piston crown alone results in generally lower cylinder pressure, lower brake specific fuel
consumption and lower NOx emission compared to the baseline engine. Soot emission is
typically increased below 2000 RPM and decreased above 2000 RPM. Coating the head alone
reduces cylinder pressure, but generally increases specific fuel consumption and NOx and soot
emissions.

The analytical portion of the study involved modifications to the KIVA-II code and its
use to model the Hydra engine with the thermal coatings. Modifications to the code include
incorporation of an eddy-break-up combustion model to replace the standard Arrhenius single
reaction model. A time dependent combustion surface temperature was also incorporated to
simulate the effects of thermal barrier coatings on cylinder temperature, pressure and NOx
production. A soot model was added to the code following the work of Magnussen and
Hjertager. The EBU model gives better results for the diffusional portion of the combustion
process, but fails to adequately model the premixed combustion, typically resulting in a lower
predicted peak cylinder pressure (and temperature) than predicted by the single reaction model
and shown by experiments. Consequently, the EBU model also under-predicts NO emission to
a greater degree than the SR model. The KIVA-II modeling has led to an understanding of the
effect of coating the piston on NO production. The hotter piston crown warms the intake air,
shortening ignition delay and decreasing the ratio of premixed to diffusion combustion,
ultimately resulting in lower peak cylinder temperature and reduced NO. The KIVA-II results
agree reasonably well with the experimental data for cylinder pressure and NO and soot
emission.

The work is continuing with the use of JP-8 fuel. Performance and emissions will be
compared between the baseline engine and with the various coated surfaces with JP-8 as the fuel.
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« INVESTIGATED EFFECTS OF THIN THERMAL BARRIER
COATINGS ON VARIOUS SURFACES ON PERFORMANCE
AND EMISSIONS OF THE RICARDO HYDRA DI ENGINE

« TESTS WERE MADE WITH VARIOUS COMBINATIONS OF
SURFACE COATINGS

» PISTON CROWN
« CYLINDER HEAD AND VALVE FACES
 PISTON, HEAD AND CYLINDER LINER

« EFFECT ON BSFC, IGNITION DELAY, SMOKE, NOX

« EXPERIMENTAL RESULTS COMPARED WITH KIVA-II
MODELING RESULTS

« KIVA-II MODEL INCLUDES EDDY-BREAK-UP COMBUSTION
MODEL, SOOT MODEL AND COATED SURFACE THERMAL

MODEL

« WORK IS CONTINUING CURRENTLY WITH JP-8 FUEL
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THERMAL BARRIER COATINGS

Piston Crown - 0.25 mm slurry sprayed PSZ
85% Cubic Zirconia, calcium partial stabilization '
10% Tungsten Cobalt Chrome powder
5% Cr203
Cylinder Liner - 0.75 mm Plasma Sprayed YSZ above TRR
0.2 mm slurry sprayed PSZ wear coat over
entire liner surface

Head and Valves - 0.6 mm TBC with hollow Alumina spheres
65% Silica
15% PSZ
7% Tungsten Cobalt Chrome powder
8% Cr203
5% Alumina spheres

Inj Timing (Deg BTDC) | 16 18 20 22
BMEP (BAR) 2.24 3.35 3.91 4.47
Speed (RPM) 1000 1500 2000 2500
Engine Build Baseline Coated Coated Coated
Piston Head Piston,
Head, Liner
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Cross Section of Ricardo Hydra DI Diesel Combustion Chamber

At TDC
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DIESEL COMBUSTION MODELING AT THE ENGINE RESEARCH CENTER

C.J. Rutland and R. D. Reitz
Engine Research Center
Department of Mechanical Engineering
University of Wisconsin - Madison
Madison, WI 53706

Modeling diesel combustion presents several unique challenges. In addition to turbulence effects
that must be considered, the combustion occurs in several distinct phases: ignition, premixed, and
diffusion. The combustion models also rely heavily on accurate spray breakup and evaporation
models to predict the gaseous fuel distributions prior to combustion.

At the ERC two major combustion modeling approaches are being pursed. The first is a
characteristic time scale based model. This approach has been under development for some time
and is performing very well for a variety of engine conditions. The second approach is based on
flamelet concepts and attempts to model the physics more directly. This method is newer and still
under development, but is performing fairly well for several cases. The flamelet approach offers
more potential as turbulence modeling moves towards large eddy simulations and as emissions
models are coupled into combustion models.

Both approaches use ignition modeling based on the Shell low temperature multi-step kinetics
model. This is a reduced mechanism consisting of eight reactions using fuel, oxygen and five
generic, intermediate species. The model was designed to simulate auto-ignition and has been
adjusted to work well for diesel ignition over a wide range of conditions.

In the time scale based combustion model the reaction rate is determined by the product of an
inverse time scale and the difference between the local species mass fractions and their local
thermodynamic equilibrium values. The time scale is a linear combination of a global, Arrhenius
reaction time scale and a turbulent mixing time scale. The Arrhenius time scale represents the
laminar burning and the mixing time scale represents the turbulent, diffusion combustion. An
exponential sliding factor is used to smoothly transition between the time scales.

The flamelet model uses a similar global Arrhenius reaction for the premixed combustion.
However, for the turbulent diffusion combustion, a coherent flamelet model is used. In this
approach, the reaction rate is the product of a flame area per unit volume and a laminar, flamelet
consumption rate. The flame area is determined from a transport equation that includes turbulent
mixing and terms that represent flame area sources and sinks. The main source of flame area is
turbulent stretching. Sink or destruction mechanisms are included for flame sheet collisions,
reactant depletion, front propagation, and wall effects.

Both combustion modeling approaches require criteria and mechanisms for modeling the
transition between the different types of burning. The main criteria for the end of ignition and start
of premixed burning is the local temperature. In the flamelet model this is augmented by a second
criterion based on heat release rates.

The transition between premixed combustion and turbulent diffusion burning is more difficult.
In the time scale model it is handled by monitoring the amount of local combustion products to
indicate the progress of the reaction. In the flamelet model, the transition uses a Damkohler number
criterion and occurs when the mixing time is slow compared to the reaction time scale. Then,
premixed burning can continue with previously vaporized fuel, but as the remaining fuel vaporizes
it goes into the turbulent diffusion model.

Overall, the combustion models compare very well with engine data. The flamelet model has
shown good agreement on several cases to date and is able to accurately capture the different types
of combustion. The time scale model has shown excellent agreement for a wide range of injection
timings and pressures, and for many difficult to model split injection cases.

Work supported by: ARO Contract # DAAL03-92-G-0122, DOE/NASA Lewis Contract # NAG3-
1087, Caterpillar; with computational resources provided by TACOM, Cray Research, and SDSC.
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Diesel vCombustion

Spray
- Atomization
- Breakup
- Vaporization

Combustion
- Ignition _ _
- Premixed burmng
- Diffusion burning

i }kmetncs controlled

}mmng controﬂed
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~Spray Modeling

o Atomization and breakup models
- Use unstable wave growth analysis
- Provides breakup tlme scale and droplet snze

» Drag modified to 1nclude droplet dlstornon -

* Breakup parameters adjusted for wa" L
interactions i T

. Mult|-component vaporlzatlon completed and .' -
currently belng tested » e

 Combustion Modeling Approaches

o Characteristic Time Scale Approach
- Very well developed

- Performing very well overa W|de range
-of engine condlt:ons . 2

¢ Flamelet Approach

- Newer model . -

- Good performance on several cases o

- Offers more potential:
- Better fit with large eddy sumulatlons, .

- Better coup!mg to emlsslons modelsf___, e
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Igmtlon Modellng

» Based on Shell Model
- Low temperature, multi-step kinetics
- Uses Fuel, Oxygen and 5 genenc species

- Has 8 reactions representmg initiation,
branching, propagatlon and te;mlnatlon

 Modified for Diesel lgmtlon f o
- Validated using bomb data for dlesel fuel
- Applied mdependently in veach grid cell -

Characteristic Time Scale
Combustion Modelmg

s Uses Local and Equilibrium Concentrations

Local concentratlon Equﬂ:bnum concentratxon

Rate =
T lammar + o ”C turbulent

e Uses Characterlstlc Lammar and Turbulent
Time Scales ; S :

7T laminar —Aexp(E/RT) o
T turbulent = C2 k/ e ( f delay coeffscnent)
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Flamelet Modeling

¢ Premixed Combustion

- Uses same laminar global reaction model as
the characteristic time scale approach

- Premixed burning can continue in same cell =
in which diffusion combustlon has begun -

» Diffusion Combustlon _ o -
- Based on coherent ﬂamelet approach

- Reaction rate uses local chemlstry and
flame area per umt volume

Rate = p VD

Diffusion Combustion Model

» Laminar Mass Burning Rate: p V},
- From 1D analysis of diffusion flame
- Uses modified Ioo_al concentrations

e Flame Area: Z . - .
- Obtained from turbulent transport equatron .

255w+ 5 -vetenv 2 %-;qﬁé;é_,ﬁf(g)-

- Source for = from turbulent stretchmg

- Destruction of = from:
reactant deplvetlo_nv L
flame interaction er.
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Diesel Flamelet Modeling

* Vaporizing Fuel
- Initially, the vaporizing fuel goes to
premixed burning

- After diffusion flame is establlshed ina cell
vaporizing fuel goes to d|ffu5|on burnmg '

J Implementatuon _ . oo -
- Transport equat|on for vaporlzed premlxed
fuel mass fraction
- Transport equation for merts to determme
actual flame stOIchlometry : ' i

Physical Interpretation

_”s_:Pfemixéd Burn : v ‘lefusidn Burn

ignition
- Kinetic controlled | |- Kinetic controlled | |- Mixing controlled
- Shell model - G!obal Arrhenius 1 |+ Flamelet model
‘model |~ Premixed burn

~continues with -
~old vaporized fuel | .
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vlgnition to vPremixed Transition |

e Local Temperature Criteria

- Switch to high temperature kmetlcs
(premixed combustion) when T > 1000 Koo

- Used by both modellng approaches ',

» Heat Release Rate Cnterla (ﬂamelet approach)";

- Use linear combination of ignition and &
premixed heat release rates during transrtlon :

- Helps preventsf Eii'istabilities' during transition

Premlxed to lefusmn Transrtlon

. Characteristic Time Scale Approach

- Combine laminar and turbulent time scales with
exponential sliding factor, f

- Transition factor increases as reaction progresses
- Reaction progress momtored by products :

¢ Flamelet Approach

- Mixing controlled: dlﬁusron flame lmtlated when
local Damkohler number becomes large

Aexp(— A/RT )
- Initial flame area equ_a'l to loca_l drop surface area
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_ Engine Simulations

» Caterpillar Engine

- Compression ratio 145
. . - Displacement 2.44 liters
single cylinder 3406 - Injector 6 holes, up to 90 MPa
- Speed and equiv ratio 1600 rpm, 0.48
(3%

Characteristic Time Scale Flamelet
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Detail of Pressure Trace
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| _Heat Release Contours: Flamelet

-4 Crank Angle Degree ATDC

Premixed
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‘Cat Engine 1 600 pm
501-13 =.0.48

Heat Release Contours Flamelet
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Detailed Results from the
Characteristic Time Scale Model

o Effects of Injectlon Timing

* Effects of lnjectlon Pressurév .
* Results of Emlssmns Modelmg .
o Split Injectlon Results |

. Alternatlve Turbuience Modelmg '

Effects of Injection Timing

10 F s o i. =-15 atdc
. ":fﬁ-13atdc '

Pressure _(Mﬁé)_ _ | :‘ o

- _—-‘- Computed .
1 0 i i A Measured [
 9=0.¢ 46 i Crank angle (degrees) .
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Effects of Injection Pressure

141 I - S
| | w—————KIVA-180MPa | . - ?:;;1-BTDC
125 | mmmakivaooMpa | fR &1 04s

: Meas-90MPa . ! \ .

ey
3

e [ [\/A-45MPa
Meas-45MPa

 Pressure (MPa)
o .

e {

2100 s .50
ERn e -.Crank angle (degrees) s

Injection Pressure and Emissions

T T Y T T T T

A Data 45 MPa
—a—- kiva-45 MPa

1 F [45'MPa | 7| © Data-90 MPa
T Al f —e—kiva-90 MPa
g i —=—kiva-180 MPa

oot (g/bhp-hr)

SlsoMa]

1500
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Temperature

H=2370K
L= 958K

NOx-Mass Fraction

H=0.60 g/kg
L=0.06 g/kg

Soot-Mass Fraction

H=0.80 g/kg
L=0.08 g/kg

Cat Engine 7°ATDC

5753

10 L EL IR T OO BRERE SENER SEFET IR

 Prassore (MPa) |

e »’ g
o e (dgees)

50% - 50%

— Computed
—— Measured
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Alternative Turbulence Model
Results for RNG modlflcatlon of € equatuon

- : | =
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0
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- Crank angle (degrees)

Summary

e Two Approaches toCombustlon Modeling
- Characteristic time scale and flamelet methods
- Both methods perform well

« Modeling Provides lm'pe‘rte'nt Information
- Effects of mjectlon pressure and tlmmg

- Detailed mformatlon about ﬂow, heat release o S

and emlssmns

* Future Dlrectlons . e
- Improve burnmg transmons
- Improve spray models

- Improve turbulence and spray mrxmg models
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